Asparaginases are therapeutic enzymes currently used for treatment of acute lymphoblastic leukemia and non-Hodgkin’s lymphoma. Rapid serum clearance and immune inactivation are the main drawbacks that limit their application. This has been addressed by decorating the enzyme with biocompatible polymers. Specifically, a commercial formulation of *E. coli* L-asparaginase II randomly conjugated with mono-methoxy polyethylene glycol (mPEG) reduced the incidence of neutralizing antibodies and exhibited longer blood half-life activity than the non-conjugated enzyme. Unfortunately, random modification also impacts negatively on the drug’s pharmacodynamics leading to drastically reduced biological activity (85 to 0%) and substrate affinity (K_M). To improve this, herein we site-selectively modified asparaginase with bi-maleimide-PEGs by linking the polymers to cysteines which were introduced by mutagenesis. In addition, to reduce the number of polymers around the enzyme, we successfully cross-linked the asparaginase subunits to generate enzymatically active conjugates, using 1000, 2000 and 5000 g/mol PEGs.

We obtained different physical states (gel to soluble) and sizes (~140 to 400 kDa) for the conjugates, depending on the length of PEG used. The 1kDa-PEG-conjugate (gel) had a similar temperature enzymatic profile as a commercial randomly-PEGylated *E. coli* L-asparaginase II formulation (Sigma-Aldrich) and proved to be highly reusable. The 5kDa-PEG-conjugate (soluble) exhibited slightly higher enzymatic activity than the native non-conjugated enzyme when tested at 37°C, and 4.2 times more at 25°C. In addition, we obtained interesting data regarding expression of recombinant asparaginase cysteine-mutants, necessary for conjugation through thiol-maleimide chemistry. We found that our double-mutation (A38C-T263C) expressed at 33% compared to the native recombinant asparaginase, tested in *E. coli* BL21(DE3), and it was more complicated to purify using anion exchange chromatography. A mutant without the natural cysteine bond (C77-105S), still retained full enzymatic activity, but exhibited almost no extracellular secretory expression. Aiming to overcome this problem, we recently designed an expression system containing a His-tag along with deletion of the two-natural cysteines. This construct was relatively easy to purify, but again the secretory expression was very low. This let us to believe that the natural cysteine(s) in *E. coli* L-asparaginase II play a key role in the extracellular secretion mechanism of this enzyme.

References:

Supporting:
[1] Research facilities at the UPR - Chemistry Department, Facundo Bueso
[2] Research facilities at the UPR-Molecular Sciences Research Center
[3] RISE Program at the University of Puerto Rico - Rio Piedras Campus

Collaborators:
Manoj Saxena, Louis J. Delinois, Freisa M. Joaquín-Ovalle, Virginia A. Rojas-Nieves